Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries.
نویسندگان
چکیده
Although lithium-ion batteries are traditionally considered to be the most promising candidate for electrochemical energy storage owing to their relatively long cycle life and high energy efficiency, their limited energy density as well as high cost are still causing a bottleneck for their long-term applications. Alternatively, rechargeable Li-O2 batteries have the potential to practically provide 3-5 times the gravimetric energy density of conventional Li-ion batteries. However, the lack of advanced electrode design and efficient electrocatalysts for oxygen reduction-evolution reactions remains as one of the grand challenges before this technology can be commercialized. Among various catalyst formulations, nanocarbon composite materials have been recognized as the most promising ones for Li-O2 batteries because of their reasonable balance among catalytic activity, durability, and cost. In this perspective, the recent progress in the development of nanostructured carbon-based electrocatalysts for nonaqueous Li-O2 batteries is discussed, including metal-free carbon catalysts, transition-metal-nitrogen-carbon composite catalysts, and transition-metal-compounds/nanocarbon catalysts. The morphology-performance correlations of these catalysts are highlighted, aiming to provide guidance for rationally designing advanced catalysts.
منابع مشابه
Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance
The key factor to improve the electrochemical performance of Li-O₂ batteries is to find effective cathode catalysts to promote the oxygen reduction and oxygen evolution reactions. Herein, we report the synthesis of an effective cathode catalyst of ruthenium nanocrystals supported on carbon black substrate by a surfactant assisting method. The as-prepared ruthenium nanocrystals exhibited an exce...
متن کاملA Carbon‐ and Binder‐Free Nanostructured Cathode for High‐Performance Nonaqueous Li‐O2 Battery
Operation of the nonaqueous Li-O2 battery critically relies on the reversible oxygen reduction/evolution reactions in the porous cathode. Carbon and polymeric binder, widely used for the construction of Li-O2 cathode, have recently been shown to decompose in the O2 environment and thus cannot sustain the desired battery reactions. Identifying stable cathode materials is thus a major current cha...
متن کاملDynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-...
متن کاملCritical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li–O2 Batteries: Surface Oxygen Density
Li−O2 batteries provide high-capacity energy storage, but for aprotic Li−O2 batteries, it is reported that the charge−discharge efficiency is ultimately limited by the crystal growth of insoluble Li2O2 on the porous cathode. Catalysts have been reported to improve the nucleation and morphology of Li2O2, which helps achieve high energy densities. We provide a new insight into the catalytic mecha...
متن کاملCompatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability
Lithium-oxygen batteries with high theoretical energy densities have great potential. Recent studies have focused on different cathode architecture design to address poor cycling performance, while the impact of interface stability on cathode side has been barely reported. In this study, we introduce CoO mesoporous spheres into cathode, where the growth of crystalline discharge products (Li2O2)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 27 شماره
صفحات -
تاریخ انتشار 2014